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46 Abstract 

47 
48 Habitat-based distribution modelling is an established method for predicting 

49 species distributions and is necessary for many conservation and management 

50 applications. Cetacean habitat models have primarily been developed using data from 

51 visual surveys. However, numerous techniques exist for detecting animal presence and 

52 each capture a portion of the true population. Combining detection data gathered from 

53 multiple survey methods, such as visual and acoustic surveys, may lead to a more robust 

54 picture of a species distribution and ecology. We compare habitat models for Dall’s 

55 porpoise built with visual versus acoustic survey data from a line-transect survey in the 

56 California Current and develop a combined model, utilizing both acoustic detections and 

57 visual sightings. Combining acoustic and visual detections increases sample size and 

58 allows for detections under a greater range of oceanographic conditions. Consequently, 

59 the combined model shows a modest expansion of predicted distribution of Dall’s 

60 porpoise compared to either single-source model. However, this study reveals that 

61 acoustic and visual methods appear to be more complementary, rather than directly 

62 additive. Models built with acoustic data display differences from those built with visual 

63 data. Different predictor variables were selected across models and the acoustic model 

64 predicts a distribution shifted slightly south of the visual distribution. Results from the 

65 current study show promise for incorporating acoustics into habitat models but also 

66 identify discrepancies in population sampling between these two methods that should 

67 inform future population assessments and modelling efforts. 

68 
69 
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1. Introduction 

71 
72 A foundational step in the management or conservation of any species is to 

73 understand spatial and temporal changes in distribution patterns. Habitat-based 

74 distribution modelling is an established method for examining the biotic and abiotic 

variables that best characterize the observed distribution of a species (Redfern et al., 

76 2006; Franklin, 2010; Bailey et al., 2009; Becker et al., 2012a; Pardo et al., 2015). 

77 However, for highly mobile marine predators, model performance and ecological 

78 understanding are often constrained by sparse distribution data. Numerous techniques 

79 have been developed for detecting animal presence, each capturing a portion of the true 

population of cetaceans in an area. However, the majority of habitat models have been 

81 built with one source or type of distribution data (e.g. visual or acoustic or telemetry 

82 data). While combining detection data gathered from multiple survey methods may lead 

83 to a more robust picture of a species distribution and ecology, the significant challenges 

84 involved in merging data types have hindered the development of combination models. 

Visual and acoustic detection methods are two of the most common methods used 

86 for studying and assessing marine mammal populations. Consequently, there is great 

87 interest in using these data to better predict cetacean distribution and habitat use. Habitat 

88 models built with visual sightings data are now commonplace and have proven to be an 

89 effective management and conservation tool (Redfern et al., 2006; Becker et al., 2012a; 

Redfern et al., 2013; Canadas et al., 2018). Models built with acoustic data have been 

91 developed more recently (Booth et al., 2013; Yack et al. 2013). Passive acoustic 

92 techniques have the potential to sample more consistently and supplement limited ship 

93 time (Mellinger et al., 2007; van Parijs et al, 2009; Klinck et al., 2012). Additionally, for 
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94 highly mobile or cryptic species passive acoustic monitoring (PAM) may be more likely 

95 to detect animal presence than visual observation (Mellinger et al., 2007; Marques et al., 

96 2009; Marques et al.,2013; Rogers et al., 2013). Both visual and acoustic techniques have 

97 strengths and weaknesses that vary by species and application. In many respects, these 

98 two techniques are complementary: visual surveys capture animals at the surface but are 

99 affected by sighting conditions and the percentage of time an individual spends at the 

100 surface while acoustic surveys capture animals under water but rely on animals 

101 vocalizing within range of the acoustic device. Consequently, combining acoustic and 

102 visual detections in habitat models is expected to improve ecological understanding and 

103 distribution predictions. Yet, there are numerous challenges in joining visual and acoustic 

104 data in habitat models. First, the number of taxa that can be identified to species using 

105 acoustics is limited (Marques et al., 2013). Second, many of the species that can be 

106 identified using acoustics have vast differences in their visual and acoustic detection 

107 ranges, which can complicate the interpretation, matching, and geographic assignment of 

108 detections. Finally, and perhaps most significantly, innate differences between acoustic 

109 and visual methods result in different acoustic and visual survey effort. Even for acoustic 

110 and visual surveys conducted simultaneously from the same platform this poses a 

111 significant challenge in merging these two techniques. 

112 Since all visual and acoustic surveys will have discrepancies in survey effort, any 

113 attempt to combine or directly compare these data must aim to understand and reduce 

114 these discrepancies. To date, attempts to integrate visual and acoustic detection data have 

115 primarily compared visual-based habitat models to acoustic detection rates and trends in 

116 the surrounding area (Brookes et al., 2013; Thompson et al., 2015; Rayment et al. 2017). 
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117 While these efforts represent important advances in comparing and contrasting the 

118 distribution patterns captured by the two detection techniques, there are several 

119 methodological issues with such an approach. These comparisons have used different 

120 data sets collected from different platforms and across different temporal and spatial 

121 scales. For example, passive acoustic presence/absence data from moored devices (e.g. 

122 CPODs and MARUs) have been compared to visual-based habitat models created from 

123 aerial or ship-based visual surveys (Brookes et al., 2013; Soldevilla et al., 2014). Since 

124 acoustic and visual detections may reflect different behaviors and habitat use patterns of 

125 cetaceans, models built with different data types collected from different times and places 

126 contain additional experimental variables. These variables can skew model results with 

127 the multi-platform experimental design providing little opportunity to determine if the 

128 results are due to diverse behavioral patterns captured by the detection methodologies or 

129 spatial and temporal variability in conditions experienced by the animals. It is therefore 

130 pertinent to control for time and place in order to directly compare and combine visual 

131 and acoustic models. In this study, we develop and compare visual, acoustic, and 

132 combined habitat models built with visual and acoustic data collected simultaneously 

133 from a ship-based survey in the California Current Ecosystem (CCE). To our knowledge, 

134 this is the first study to build an acoustic habitat model from ship-board towed array data 

135 in the Pacific and the first to build a combined habitat model using visual and acoustic 

136 data for any cetacean species. 

137 Dall’s porpoise, Phocoenoides dalli, was selected as a case study for model 

138 building and comparison. Dall’s porpoise are found in cool temperate pelagic waters of 

139 the North Pacific between 32°N and ~63°N (Jefferson, 1988). This species was selected, 
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140 in part, because previous habitat models of Dall’s porpoise built with only visual data 

141 have shown consistent habitat relationships and provided validated interannual, seasonal, 

142 and near real-time forecasts of distribution and density in the CCE with which to compare 

143 initial acoustic modelling efforts (Forney 2000; Barlow et al., 2009; Becker et al., 2010, 

144 2012a, 2012b; Becker et al., 2014, 2016). Additionally, Dall’s porpoise regularly react to 

145 ships which can bias abundance estimates (Bouchet et al., 1983). This reactive movement 

146 leads to artificially raised observed densities, especially in rougher sea states where 

147 sighting distance is restricted and observers are less likely to spot animals before they 

148 react to the vessel (Bouchet et al 1983; Dawson et al., 2008). Consequently, some past 

149 visual-based estimates of abundance have been restricted to Beaufort sea states two or 

150 less (Barlow, 1995; Barlow & Forney, 2007). Acoustics thus offered a promising 

151 approach. The selection of Dall’s porpoise was also motivated by their acoustic behavior. 

152 Dall’s porpoise produce narrow-band high-frequency (NBHF) echolocation clicks, 

153 readily discernible from most species in our study region in the CCE (Basset et al., 2009). 

154 Additionally, the acoustic and visual detection ranges for Dall’s porpoise are both within 

155 the range of a single segment length used in our model construction (5km), allowing both 

156 detection types to be reliably assigned to the same geographic segment of the transect. 

157 Specifically, the effective strip width (ESW), or typical distance at which Dall’s porpoise 

158 are seen, is 1.5km (Barlow et al., 2011) and estimates of their acoustic detection range 

159 are on the order of a few hundred meters (along the main axis of the click) (Kyhn et al., 

160 2013). Finally, the selection of Dall’s porpoise as a case study was motivated by survey 

161 design considerations. Many cetacean assessment surveys employ a “closing mode” 

162 protocol during which a ship conducting a line transect survey diverges from the trackline 
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163 to estimate group size visually thereby ceasing acoustic survey effort until the ship 

164 resumes its planned trackline. This approach was not used for Dall’s porpoise for the 

165 present study, which helped minimize discrepancies in standardized trackline effort 

166 between visual and acoustic survey methods. 

167 The aims of this study are to directly compare visual and acoustic habitat models 

168 of Dall’s porpoise in the California Current Ecosystem and to trial a methodology for the 

169 combination of visual and acoustic survey data in a single model. In doing so, we explore 

170 the contribution of each of these data types in capturing the species distribution. These 

171 aims are driven by the hypothesis that more distribution data produces models with more 

172 predictive power. The following specific objectives guide this study: 1) build a habitat 

173 model with visual detections for Dall’s porpoise in the CCE using the same methodology 

174 that has been established by previous studies using visual detections; 2) build a habitat 

175 model with acoustic detections for Dall’s porpoise in the CCE using the same 

176 methodology employed for the visual model in this study; 3) compare the models built 

177 with acoustic and visual detections; 4) build a single habitat model combining visual and 

178 acoustic detections; 5) compare the combined model to the two single-stream models. In 

179 developing the methodology for combining visual and acoustic data in habitat models, we 

180 identify key research that is needed to improve this approach. 

181 
182 
183 
184 
185 
186 
187 
188 
189 

7 



 

 
 

 

 
 

   
  

     

             

           

              

                

                

             

              

                

             

             

         

190 2. Methods 

191 
192 2.1 Field Methods 

193 Acoustic and visual data were collected as part of the ORCAWALE (Oregon, 

194 California, Washington Line-transect and Ecosystem) survey conducted on the NOAA 

195 R/V McArthur II from July 28- November 30, 2008. The survey area encompassed 

196 waters off the US west coast out to 555km (300nmi) from shore. The line-transect survey 

197 followed a regular grid pattern (Fig. 1a) at a speed of 18.5km/hr (10 knots). Dedicated 

198 marine mammal observers collected cetacean sighting data from the ship’s flying bridge 

199 (observation height = 15.24 m) along all transects. Observers rotated between 3 stations 

200 with the left and right observers using 25 x 150 mounted binoculars and the central 

201 observer searching with the naked eye or (occasionally) hand-held binoculars. For all 

202 marine mammal sightings, the time, position, distance and bearing from ship, species 

203 identification, group composition and group size were recorded. 
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204 
205 Fig. 1: (a) Completed transects for the 2008 ORCAWALE survey between July 28th and November 30th , 

206 2008. (b): Geographic regions used for evaluation of spatial patterns of encounter rates detailed in Table 2. 
207 The grey north-south line through the study area represents the 2000m isobath (Reproduced from Barlow, 
208 2010 and Becker et al. 2012a). 
209 

210 A five-element hydrophone array was towed approximately 300m from the stern 

211 of the ship at a depth of 4-8m during daylight hours to detect echolocation clicks (Barlow 

212 et al., 2010). Three high-frequency hydrophones were encased in an oil-filled array 

213 (Reson TC4013 hydrophones with a frequency response of 1.5 to 150 kHz ±3 dB with a 

214 sensitivity of -170 dB re 1V/μPa after 40 dB pre-amplification). Hydrophones 1 and 2 

215 were spaced 30cm apart and hydrophone 3 was 200cm from hydrophone 2. Rainbow 

216 Click software (International Fund for Animal Welfare, IFAW) (Gillespie & Leaper, 

217 1996) was used to record any high-frequency detections. Logger 2000 software (IFAW) 

218 was used with Rainbow Click to record GPS locations and plot detected clicks of possible 

219 porpoise on a real-time spectrographic display that was monitored continuously. The 
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220 array was monitored aurally and visually for cetacean vocalizations from a real-time 

221 spectrographic display for a total of 762 hours during 11,465 km of survey trackline. Data 

222 from the high-frequency hydrophones were digitized at a sampling rate of 480 kHz using 

223 a National Instruments USB-6251 soundcard and were recorded to hard disk for later 

224 post-processing. To detect and classify Dall’s porpoise detections used in model building, 

225 all of the data files from the cruise were reviewed manually. In post-processing visual 

226 review of click detections, five criteria were assessed in Rainbow Click including (1) 

227 wave form, (2) power spectrum and peak frequency, (3) time-frequency structure as 

228 viewed through a Wigner-Ville transformation plot, (4) number of clicks, and (5) ability 

229 to localize clicks based on the convergence of bearing angles. A Wigner plot is a 

230 quadratic time-frequency representation (QTFR) used to analyze the time-frequency 

231 structure of broadband cetacean clicks (Preis & Georgopoulos, 1999). Detections with 5 

232 or more clicks, clear track patterns (i.e. some clicks were not along the beam), a clean 

233 wave form, a peak frequency between 129 and 137kHz and a Wigner plot with a strong 

234 single energy peak were classified as “definite” (Fig. S1). Detections meeting these 

235 criteria but with only three or four clicks in a series were labeled as “probable”. If the 

236 detection had only two clicks in a series, but all other characteristics were shared with the 

237 “probable” assessment, then it was categorized as “possible”. 

238 At-sea oceanographic data collection included sea-surface temperature (SST), 

239 salinity (SSS), mixed layer depth (MLD; here defined as the depth at which temperature 

240 is 0.5°C less than the surface temperature), chlorophyll concentration (CHL), and 

241 Beaufort sea state. SST and SSS were collected continuously at 0.5- to 2-minute intervals 

242 using a thermosalinograph sensor mounted at a depth of 3 meters and averaged over 5km 
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243 intervals. MLD was measured by expendable bathythermographs (XBTs) deployed five 

244 times a day and conductivity-temperature-depth (CTD) casts conducted every evening. 

245 Surface chlorophyll concentration (CHL, mg m-3) was measured 3-5 times per day using 

246 CTD surface water samples and bucket water samples (Barlow et al., 2010). CHL values 

247 were log transformed prior to analyses. MLD and CHL measurements were interpolated 

248 to create continuous spatial grids of the oceanographic data with ordinary kriging using 

249 the ArcGIS Geostatistical Analyst tool (Version 10.1, ESRI, Inc.). In addition to these 

250 habitat variables collected in the field, data on sea-floor depth and distance from shore 

251 were obtained from ETOPO2, a 2-minute global relief data set (U.S. Department of 

252 Commerce 2006) and extracted using ArcGIS Spatial Analyst. The full suite of potential 

253 predictor variables included SST, SSS, CHL (log transformed), Beaufort sea state, MLD, 

254 depth, and distance from shore. 

255 2.2 Habitat modelling 

256 The overall modelling approach is schematically outlined in Figure 2. In 

257 preparation for model building, both the acoustic and visual survey data were divided into 

258 approximately 5km segments of continuous effort following Becker et al. (2010) to 

259 create two distinct effort databases. The visual database was later used as the foundation 

260 to construct the combined database (see below) (Fig.2). The acoustic database includes 

261 2,361 segments while the visual database includes 2,556 effort segments. The “on-effort” 

262 segments vary between these two methods for multiple reasons. For example, sea state 

263 conditions above Beaufort 5 typically necessitated visual observers to go off-effort. 

264 Consequently, the visual database includes segments in Beaufort conditions 0-5 while the 

265 acoustic database includes segments in conditions 0-6. Additionally, acoustic equipment 
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266 status and personnel coverage sometimes necessitated that acoustics was ‘off-effort’. 

267 Finally, when the visual team was in closing mode and diverged from the trackline, 

268 acoustics was ‘off-effort’. The interpolated (MLD, CHL, depth, distance from shore) or 

269 averaged (SST, SSS, Beaufort) habitat variables were then associated with segment 

270 midpoints in each database using ArcGIS. Student’s t-tests were used to compare 

271 oceanographic conditions during acoustic and visual detections. Porpoise encounters, 

272 either visual sightings or acoustic detections, were assigned to the segment on which they 

273 were detected. Porpoise sighting data were truncated at 3km range (e.g. excluded from 

274 analyses if they were farther from the trackline than an established truncation distance) 

275 for consistency with species specific effective strip width estimates used in previous 

276 modelling efforts (Barlow et al., 2011). Since we are currently unable to determine the 

277 number of individual Dall’s porpoises vocalizing in an acoustic detection event, we used 

278 these two data sets to create models of encounter rate (number of sightings/detections per 

279 segment) rather than density. All on-effort transect segments, regardless of whether or not 

280 they contained sightings or detections, were included in the databases for model building, 

281 as described in previous publications detailing encounter rate modelling (Barlow et al., 

282 2009). 

283 In order to build the combined database, two major methodological concerns 

284 required consideration. The first was the spatial and temporal discrepancy in effort 

285 between the acoustic and visual surveys. While the shared platform and concurrent 

286 surveys largely aligned these methods, the slight differences in active status of each 

287 detection team created some differences in ‘on-effort’ segments. This was addressed by 

288 only using segments for which both visual and acoustic teams were ‘on-effort’ in our 

12 



 

 
 

 

 
 

 

              

               

             

             

              

              

              

              

             

              

               

                

              

            

               

               

    

289 combined database (Fig. 2). Although this reduced the number of distinct detections that 

290 could be used in model building, this approach was a conservative starting point to 

291 address the challenge of merging two approaches with inherently different effort. By 

292 including only the segments surveyed by both methods, all spatial and temporal 

293 variability in habitat conditions are controlled for, thus enabling direct comparison of the 

294 detection methods. The second concern was the possibility of double counting a single 

295 Dall’s porpoise detection as one visual detection and one distinct acoustic detection. To 

296 address this, definite acoustic detections that occurred while the visual team was on-effort 

297 were cross-referenced with the visual segment database. The location of each definite 

298 acoustic detection was determined and since the effective strip width for Dall’s porpoise 

299 is 1.5km, any visual detection that was within 1.5km of the acoustic detection was 

300 regarded as the same detection (Barlow et al., 2011). If there was no visual sighting 

301 within the ESW distance, the acoustic detection was determined to be distinct and 

302 therefore an additional detection event. Consequently, the combined database included all 

303 visual sightings (some of which had also been detected acoustically) as well as definite 

304 acoustic detections that had not been visually observed yet occurred while the visual team 

305 was on-effort. 
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306 

307 Figure 2: Schematic outlining the overall modelling approach executed in this study. Two different acoustic 
308 models were built (one with all of the on-effort acoustic detections and one with the ‘definite’ on-effort 

309 acoustic detections). One visual model was built with all of the on-effort sightings. A combined model was 
310 built with all of the on-effort sightings as well as the ‘definite’ on-effort acoustic detections that had not 

311 been visually observed. 
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312 
313 The three databases were used to construct four models. The visual database was 

314 used to build one model, two models were built with the acoustic database (one with 

315 definite acoustic detections and one with all acoustic detections to examine the impact of 

316 less certain detections on model predictions), and one model was built with the combined 

317 database (i.e. sightings and ‘definite’ on-effort acoustic detections that had not been 

318 visually observed). Given the high number of potential predictor variables and small 

319 number of sightings/detections, we first conducted an exploratory analysis to identify the 

320 most significant predictor variables. Correlation coefficients between all predictor 

321 variables were calculated and those with R2 values > 0.65 were eliminated from further 

322 analyses (Table S1). This cut-off value was selected as it is the correlation value between 

323 distance from shore and depth, which is known to be highly correlated in the CCE. This 

324 process resulted in a revised set of potential predictors that included SST, SSS, depth, and 

325 Beaufort sea state and eliminated chlorophyll, distance from shore, and MLD. 

326 Modelling methods largely follow those of Becker et al. (2016) with some 

327 exceptions due to the nature of our questions and the small sample size of detections 

328 contained in our single year dataset. In brief, generalized additive models (GAM) 

329 (Hedley et al., 1999; Ferguson et al., 2006) were developed in R (v. 3.2.2, R 

330 Development Core Team, 2015) using the mgcv package (v. 1.8-7) (Wood, 2008; Wood, 

331 2011) to relate the number of acoustic and visual encounters of Dall’s porpoise per 

332 segment (the response variable) to the oceanographic variables. Beaufort sea state was 

333 included as a predictor in all models to explore the potential variable effects of sea state 

334 on detection probabilities between visual and acoustic techniques. 
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335 The natural logarithm of segment length was used as an offset to account for 

336 differing segment lengths. Degrees of freedom were limited to k=4 due to the small 

337 sample sizes of Dall’s porpoise detections. Since encounter rates are sparse count data 

338 with large numbers of zeros, models were built using a log-link function, and quasi-

339 Poisson, negative binomial and Tweedie error distributions were compared. The latter 

340 was selected based on its suitability for zero-inflated count data (Miller et al., 2013) and 

341 on inspection of diagnostic plots of model residuals and quantiles. Restricted maximum 

342 likelihood (REML) was used to optimize the parameter estimates (Wood, 2011). Model 

343 selection was performed with automatic term selection (Marra & Wood, 2011), informed 

344 by the approximate p-values of each predictor (Wood, 2011). Variables found to be non-

345 significant (α=0.05) were excluded and models re-fit until all variables were significant. 

346 Functional forms of the modeled relationships as well as the p-values of each significant 

347 predictor variable were used to determine order of variable importance. 

348 The best model for each data set (visual, definite acoustic, all acoustic, and 

349 combined visual and acoustic) was then used to predict segment-specific encounter rates. 

350 These predicted encounter rates were interpolated to the entire CCE study area by 

351 Empirical Bayesian kriging using the ArcGIS Geostatistical Analyst tool to create 

352 predicted distributions at 5km2 resolution (from a 10km x 10km regular grid with Power 

353 semivariogram, overlap factor =1). The final distribution maps for the models thus 

354 provide predicted encounter rates across the CCE for the summer/fall of 2008. Sightings 

355 and acoustic detections were overlaid on these prediction grids to allow for comparison 

356 of the model predictions and observations (Barlow et al., 2009; Becker et al., 2010, 

357 2012a; 2012b; 2016; Forney et al., 2012). 
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358 3. Results 

359 
360 During the 2008 survey, there were 79 on-effort sightings of Dall’s porpoise. 

361 Post-processing of acoustic data resulted in 44 on-effort detections with 28 definite, 10 

362 probable and 6 possible detections. Ten of the 28 definite Dall’s porpoise acoustic 

363 detections were also recorded as visual detections. The combined visual and acoustic 

364 database was composed of the 79 sightings and the 18 definite acoustic detections that 

365 were not sighted. Both visual and acoustic detections of Dall’s porpoise were more 

366 common nearshore and north of 38°N. 

367 The oceanographic conditions differed between sightings (n=79) and acoustic 

368 detections (n=44). The median Beaufort sea state throughout the cruise was 4 and both 

369 sightings and acoustic detections were made frequently in this sea state. However, the 

370 mean Beaufort sea state varied significantly between visual and acoustic detections (T = -

371 5.2, df = 97.5, P < 0.0001). Numerous sightings were made in calm sea states (Beaufort 

372 1-3; avg. 2.9 ± 1.2) while acoustic detections were more frequent in sea states 4 and 5 

373 (avg. 4.0 ± 0.8) (Fig. 3). Additionally, acoustic detections were made in significantly 

374 more saline (T = -3.3, df = 77.7, P < 0.001) and less stratified waters (T = -4.1, df = 46.7, 

375 P < 0.0001) (Table 1). There were also regional differences between acoustic and visual 

376 detections (Table 2). Eighty percent of sightings occurred in the northern half of the study 

377 area (Regions 1-4) while acoustic detections were more geographically spread with 38% 

378 of detections made in the southern half of the CCE (Regions 5-8). Most of the encounters 

379 that were acoustically detected but not visually observed were in offshore northern waters 

380 (Regions 1-3). 

17 



 

 
 

 

 
 

 

  

  

  

  

              
              

    

        

     

        

         

        

      

  

  

  

                   
                 

        

     

      

      

      

      

      

      

      

      

  

381 

394 

382 

383 

384 

385 
386 
387 

Table 1: Mean and standard deviations of oceanographic conditions by detection type. Significant 

differences in oceanographic conditions between visual and acoustic detections are highlighted in bold 
(P<0.01). 

Habitat Variable Visual Detections (n=79) Acoustic Detections (n=44) 

Beaufort 2.9 (±1.2) 4.0 (±0.87) 

Sea Surface Temperature °C 14.7 (±1.2) 15.0 (±1.4) 

Sea Surface Salinity ‰ 32.6 (±0.51) 32.9 (±0.47) 

Mixed Layer Depth (m) 21.2 (±6.18) 29.6 (±11.6) 

Depth (m) 2856.7 (±887.99) 3153.7 (±1116.518) 

388 

389 

390 

391 
392 
393 

Table 2: Percentage of detections made in each region of the study area. Numbers shown are percentages of 

total acoustic (44), visual (79) and acoustic detections missed by visual sightings (18). Numbers next to 
Region titles correspond to Figure 1(b). 

Region Acoustic Visual Missed Sightings 

WA/OR offshore (1) 18 30 28 

WA/OR inshore (2) 5 4 11 

NorCal offshore (3) 36 43 39 

NorCal inshore (4) 2 3 11 

CenCal offshore (5) 27 13 6 

CenCal inshore (6) 2 8 0 

SoCal offshore (7) 9 0 6 

SoCal inshore (8) 0 0 0 
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395 
396 Figure 3: Histograms of survey effort and Dall’s porpoise detections at Beaufort sea states 0-5 for visual 

397 methods and 0-6 for acoustic survey methods. Density on the y-axis is the number of segments (for the 
398 effort plots) or detections (for the sightings and acoustic detections plots) in each sea state divided by the 

399 total number of segments or detections for that detection type. 

400 
401 
402 

403 

404 3.1 Selected Habitat Predictor Variables: Visual Models 

405 
406 The best-fit model for Dall’s porpoise visual encounter rates included SST, 

407 Beaufort, SSS, and depth (Fig. 4a). Sightings declined steeply in waters warmer than 

408 16°C and showed a gradual decline with increasing salinity. Sightings were most 

409 common in depths of approximately 2000-3500m and declined in rougher sea states. 

410 3.2 Selected Habitat Predictor Variables: Acoustic Models 

411 Two sets of models were built with acoustic data, one using the definite acoustic 

412 detections (Fig. 4b) and one using all acoustic detections (Fig. 4c). The best definite 

19 



 

 
 

 

 
 

 

             

               

              

             

             

              

                 

                 

           
  

            

             

                

               

            

             

  

413 detections model included only SST. Acoustic detections, similar to sightings, declined in 

414 waters with SSTs above 16°C. The best-fit model for all acoustic detections of Dall’s 

415 porpoise included SST and depth (Fig. 4c). The functional form of the relationship 

416 between Dall’s porpoise acoustic detections and SST in the “all” detections model 

417 displayed a slightly more linear decline with increasing temperature, compared to the 

418 visual model. The “all” acoustic detections model displayed a slight decline in detections 

419 from deep to shallow waters in contrast to the visual models which showed a decline in 

420 detections in deep waters (>4000m) and a peak in detections between 2500 and 3000m. 

421 3.3 Selected Habitat Predictor Variables: Combined Visual & Acoustic Models 

422 
423 The best-fit model for Dall’s porpoise combined encounters (visual and definite 

424 acoustic encounters not detected visually) included SST, Beaufort, SSS, and depth (Fig. 

425 4d). These were the same variables as those included in the best visual-only model, which 

426 is expected given the high proportion of visual sightings in this model. The functional 

427 forms of the relationships between Dall’s porpoise encounters and these predictor 

428 variables were also similar to those displayed in the visual-only model. 

429 
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430  
431  

432  
433 Figure 4: Scaled encounter rate model functions for Dall’s porpoise for a) visual model; b) acoustic model 
434 built with definite detections; c) acoustic model built with all detections; d) combined model built with both 

435 visual and acoustic detections. Degrees of freedom are in parentheses on y-axis. The y-axes represent the 
436 term’s function (linear or spline). Zero on y-axes indicate no effect of the predictor variable on Dall’s 
437 porpoise encounter rate. Y-axes have been scaled to show relative effects of predictor variables on 

438 encounter rate. Data points for each variable are shown as tick marks along x-axis. Shaded area reflects 
439 95% confidence interval. 
440  

441  
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442 3.4 Predicted Distributions 

443 
444 Inspection of the encounter rate maps show that visual and acoustic models 

445 resulted in different predicted distributions of Dall’s porpoise (Fig. 5). The visual model 

446 predicted high encounter rates off Washington and Oregon, extending into northern 

447 California waters (Fig. 5a). In contrast to the visual predictions, highest encounter 

448 predictions from the acoustic models are concentrated further south. The model built with 

449 all acoustic detections (Fig. 5d) predicted density hotspots in the waters just north of San 

450 Francisco while the definite acoustic detections model predicted a more coastal 

451 distribution from central California to the northern extent of the study area (Fig. 5c). The 

452 area of high encounters off Washington predicted by both the visual and definite acoustic 

453 detections models was missed by the all acoustic detections model. The combined model 

454 predicted distribution (Fig. 5b) was similar to that of the visual model but with additional 

455 distribution hotspots predicted off central California. 
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466 (a) (b) 

467 
468 (c) (d) 

469 
470 Fig 5: Modeled predicted encounter rates for Dall’s porpoise in the CCE in the summer/fall of 2008. 

471 Shading indicates the relative likelihood of encounters, shown in percentiles (e.g. pink corresponds to the 
472 top 5% or 95th percentile of predicted encounter rates). Models predict (a) number of encounters using 

473 visual sightings, (b) number of encounters using a combination of visual and definite acoustic detections, 
474 (c) number of encounters using definite acoustic detections, (d) number of encounters using all acoustic 

475 detections. Black triangles in panel (a) and (b) are sighting locations and black circles in panels (c) and (d) 
476 are acoustic detections. 
477 
478 
479 
480 
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481 4. Discussion 

482 The aims of this study are to directly compare visual and acoustic habitat models of 

483 Dall’s porpoise and trial a methodology for the combination of visual and acoustic detections in 

484 a single model. These aims are driven by the hypothesis that more distribution data produces 

485 models with more predictive power and therefore developing such a methodology could enhance 

486 understanding for numerous species for which passive acoustic data has been or will be 

487 collected. In the previous sections we have developed a methodology for a combined habitat 

488 model for Dall’s porpoise, with the resulting model displaying a modest expansion of the 

489 predicted distribution compared to either of the single-stream models. Yet the process of 

490 developing the combined model revealed that acoustic and visual methodologies, while 

491 complementary, may not be simply additive. The current study highlights discrepancies in 

492 population sampling between visual and acoustic methods that can help identify the strengths 

493 and limitations of future population assessments and modelling efforts. 

494 4.1 Differences between acoustic and visual models & predicted distributions 

495 The acoustic and visual sets of models developed in this study produce different 

496 predicted distributions for Dall’s porpoise in the CCE. One of the most important predictor 

497 variables in the visual model is Beaufort sea state yet it is absent from the acoustic-only models. 

498 This is consistent with previous studies detailing the challenges in surveying Dall’s porpoise 

499 visually (Barlow, 1995, Barlow et al. 2001; Barlow & Forney, 2007; Dawson et al., 2008). Sea 

500 surface temperature is a primary predictor variable included in the visual model and in both the 

501 acoustic models. This also agrees with past habitat models of Dall’s porpoise in the CCE which 

502 have consistently predicted Dall’s porpoise in cool waters. The visual model and the acoustic 

503 built with all acoustic detections included depth but the acoustic model built with definite 
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504 acoustic detections did not. This is likely due to the smaller number of definite acoustic 

505 detections and their more limited depth range. The visual model also included SSS which was 

506 not included in either of the acoustic models. Examination of the oceanographic conditions 

507 present during detections show there were significant differences in SSS and MLD between 

508 acoustic detections and visual sightings (Table 1). 

509 The discrepancies that exist between the models built with visual and acoustic data are 

510 likely due to three primary factors: the inherent differences in their detection capabilities, the 

511 sample size of detections utilized in each model, and the species behavior captured by each 

512 detection method. 

513 The differences in detection capabilities between the two methods stem from multiple 

514 sources. First, as was mentioned in the methods, the ESW for Dall’s porpoise varies between 

515 acoustics and visuals. The difference between these two methods for Dall’s porpoise (~1.5km for 

516 visuals and 0.5km for acoustics) is smaller than for many species but this inherent discrepancy in 

517 ESW results in slightly different surveyed areas. Second, since visual observations are restricted 

518 to surfacing animals, sightings are affected by Beaufort sea state (Barlow et al., 2001; Barlow & 

519 Forney, 2007). Most of the 2008 cruise was characterized by a Beaufort sea state of 4-5 (Fig. 3) 

520 yet the mean sea state during visual sightings was less than 3 (Table 1). As to be expected, 

521 Beaufort had less of an impact on acoustics. The distribution of acoustic detections relative to 

522 Beaufort sea state is more similar to the distribution of the cruise conditions, with the majority of 

523 detections made in sea states of Beaufort 4 and 5 (Fig. 3). The mean sea state during encounters 

524 which were acoustically detected but not visually observed was 4.25. Additionally, the 2008 

525 ORCAWALE cruise was conducted from north to south, beginning off Washington in the late 

526 summer and surveying off southern California in the late fall. This cruise plan was designed to 
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527 capture as calm weather as possible in the northern latitudes. However, in doing so, the southern 

528 regions of the study area were surveyed during the fall months. This latitudinal and seasonal 

529 gradient likely introduced a regional difference in detection likelihood for visual effort but not 

530 for acoustic effort. As a result, the predicted distributions from the acoustic and combined 

531 models are elevated over the visual model in the southern half of the study area. 

532 Acoustic models are based on a limited sample size compared to the visual model. 

533 However, part of the interest in developing the acoustic models is to compare them to models 

534 built with more extensive datasets to evaluate the potential of data-limited models (whether such 

535 data limitation results from infrequent species encounters, restricted acoustic detection distance, 

536 limited temporal coverage, or a combination of factors). Given the interest in passive acoustic 

537 detections for cryptic and poorly understood species, sample size constraints are likely to be a 

538 recurring challenge in acoustic-based approaches. Indeed, calculations of explained deviance for 

539 models in the present study suggests that a smaller sample size reduces the predictive 

540 performance of acoustic-based models (Table S2). However, comparisons of the predicted 

541 distribution from this study to multi-year and methodologically similar models of Dall’s porpoise 

542 distribution developed from previous studies (Becker et al., 2016), show that the current models 

543 predict a similar overall distribution pattern (Fig. S2). For example, examination of the overlap 

544 between detections and predictions shows that the model built with definite acoustic detections 

545 (Fig. 5c) has some areas of high predicted density devoid of detections. Yet these coastal areas of 

546 predicted density match those observed in the multi-year model, suggesting that despite small 

547 sample size, the definite acoustic model still captures the species-habitat relationships. For some 

548 species that are understudied and difficult to survey visually, the insight provided by the definite 
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549 acoustic model presented here may substantially increase understanding of species distribution 

550 patterns. 

551 The final primary factor driving the discrepancies between the visual and acoustic models 

552 and predicted distributions is the behavior captured by the two detection methods. Though little 

553 is known about Dall’s porpoise acoustic behavior or regularity of vocalizations, echolocation 

554 clicks are typically produced for locating prey (Kyhn et al. 2013). If acoustic detections are 

555 mostly from foraging animals, many of these individuals may be diving at the time of detection, 

556 which would cause them to be missed by the visual observers. In the present study, Dall’s 

557 porpoise were acoustically detected in waters with greater MLDs compared to the waters in 

558 which they were sighted. Dall’s porpoise are known to feed on mesopelagic fish and 

559 cephalopods (Okamoto et al., 2010). If Dall’s porpoise feed at or below the mixed layer they 

560 would be less likely to be visually sighted at the surface. Conversely, though they are believed to 

561 be frequent echolocators, there were many visual sightings that were not acoustically detected 

562 during this cruise. This could have resulted from visual detections outside the range of acoustics 

563 (e.g. past ~500m from the array). Alternatively, if Dall’s porpoise are not acoustically active 

564 during periods of travel or other non-foraging behavior, acoustic methods would only sample 

565 certain behavioral states. Behavior may also result in perceived regional or habitat differences 

566 between acoustic and visual models. Williamson et al. (2017) found that visual and acoustic 

567 surveys indicated different primary habitat areas for harbor porpoise in the Moray Firth. Acoustic 

568 methods revealed harbor porpoise occupied muddy bottom habitats at night while visual surveys 

569 found they occupied sandy bottom habitats during the day. Additionally, it has been 

570 hypothesized that Dall’s porpoise may feed primarily at night and therefore if the species is more 

571 vocally active at night, acoustic surveys during daylight hours may significantly underestimate 
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572 species presence (Amano et al., 1998). Behavioral context for vocalizations is therefore valuable 

573 for interpretations of distributions determined through acoustic detections and for the 

574 development of models using a combination of acoustic and visual detection data. 

575 4.2 Combined model & predicted distribution 

576 The most significant challenge in combining (and comparing) detection data types in 

577 habitat models is the difference in survey effort between data collection methods. To combine 

578 acoustic and visual methods, effort must be standardized. In the combined model in this study, 

579 this was accomplished by collecting visual and acoustic data simultaneously from the same 

580 platform and by including detections made while both teams were on-effort. The visual team was 

581 off-effort in Beaufort sea states above 5 while acoustic effort continued in higher sea states. 

582 Therefore, potential acoustic detections made in sea states higher than 5 were not included in the 

583 model. In the current study, this methodological step did not impact our final combined database 

584 as there were no acoustic detections in Beaufort sea state 6. However, this may not be the case 

585 for all species. The exclusion of detections made in rough seas and acoustic detections that were 

586 identified as duplications of the visual sightings may substantially discount the advantage of 

587 acoustic techniques and render acoustic modelling efforts incomplete. Since the difference 

588 between acoustic and visual detection parameters will vary across species and platforms, the 

589 approaches used in this study may not be relevant for all combined models. Future research will 

590 require species- and platform-specific considerations. Thus, developing additional approaches to 

591 reconcile differences in effort across detection methods requires further research attention. 

592 The current study is an initial attempt at merging these disparate methods and the first 

593 step in a larger effort by the US NOAA Fisheries Science Centers to refine the use of passive 

594 acoustic data in cetacean population assessments. Starting with simultaneously collected data 
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595 from a single shipboard survey, enables a more direct comparison between acoustic, visual, and 

596 combined models than previously published multi-platform studies. This initial trial of a 

597 combined model increases the sample size of detections by ~23% over the visual-only model and 

598 allows for detections under a greater range of conditions and habitats (Table 1, Fig. 4). The same 

599 predictor variables were included in the combined and visual models but the addition of acoustic 

600 detections in the combined model reduces the importance of Beaufort in the model (inferred 

601 from predictor variable p-values between the two models). The resulting predicted distribution 

602 includes regions previously absent from the visual prediction map. However, given the 

603 discrepancies between visual and acoustic models discussed above, we posit that these two 

604 methods are not directly additive. The two techniques likely capture multiple behavioral states of 

605 a target species, both at the surface and at depth (e.g. traveling and feeding) and while this may 

606 add more data points to a population assessment, they may not all be governed by the same 

607 ecological processes. The behavioral and ecological differences underlying acoustic and visual 

608 detection methods will require both species- and platform-specific consideration in future studies 

609 combining these techniques. 

610 4.3 Future Directions 

611 Both the comparison and combination of visual and acoustic methods offer insights that 

612 can direct additional research and improve future studies incorporating acoustic data into habitat 

613 distribution models. 

614 First, the differences in distribution predicted by the model built with all acoustic 

615 detections and the model built with definite acoustic detections highlight the importance of 

616 accurate acoustic detections. While unlikely, some of the possible and probable Dall’s detections 

617 may have been high-frequency noises resulting from ship operations, turbulence or array 
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618 position, or a misclassified alternative species. There are three other species in the study area that 

619 produce similarly high-frequency sounds and must be considered as possible candidates for 

620 misclassification. Harbor porpoise are found in the California Current (Barlow, 1995) and 

621 produce very similar echo-location clicks (Kastelein et al., 2002; Kyhn et al., 2013). However, 

622 their distribution is largely limited to shelf waters less than 60m in depth (Carretta et al., 2001) 

623 where towed hydrophone data were not collected during this survey. While there is the potential 

624 for geographic overlap, it is likely low due to the current survey design. Additionally, Kyhn et al. 

625 (2013) found that harbor porpoise just north of our study area, in British Columbia, are 

626 distinguishable from Dall’s porpoise in their peak frequency, with Dall’s porpoise clicks falling 

627 below 139 kHz while harbor porpoise clicks were shifted slightly higher, centered at 141 kHz. 

628 Pygmy and dwarf sperm whales (Kogia breviceps and K. sima) are also found in the 

629 study area and produce echolocation clicks with frequencies higher than 100 kHz (Madsen et al., 

630 2005). Current research indicates that signals from Kogia spp. may be distinguishable from 

631 Dall's porpoise (Merkens et al., 2015), however there are little published data on the species. The 

632 observations that do exist from both published studies and very recent field work in the 

633 California Current and Hawaiian Islands report peak frequencies ranging from 125-129 kHz, 

634 lower than Dall’s porpoise vocalizations (Marten, 2000; Merkens pers. comm. 2016; Barlow 

635 pers. comm., 2016). In addition to differences in vocalizations, the abundance of Kogia in the 

636 region is estimated to be an order of magnitude lower than Dall’s porpoise, rendering the 

637 potential for misassignment 10% or less of classified Dall’s detections. The potential for 

638 confounding species or noises should be considered in modelling approaches developed with 

639 acoustic data. Just as visual models only utilize sightings that are confirmed to species, acoustic 

640 models should only utilize the most rigorous detections of the target species. Further research on 
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641 acoustic detection and classification at the species-specific level, is needed to improve future 

642 acoustic and combination models and expand the diversity of species that can be included in 

643 such models. 

644 One of the most significant limitations of acoustic-based models is group size uncertainty 

645 and therefore the ability to estimate density. However, the field of density estimation based on 

646 passive acoustic data is expanding rapidly and for some species and platforms, density models 

647 built with acoustic detections may be possible (e.g. beaked whales and fixed-location sensors) 

648 (Marques et al., 2009; Kusel et al., 2011; Marques et al., 2013; Department of the Navy, 2015). 

649 Density estimation also requires reliable and species-specific truncation distance to determine the 

650 effective area surveyed. For example, the high frequency of Dall’s porpoise calls and resulting 

651 high attenuation reduce the acoustic detection distance of this species and ultimately limit the 

652 number of detections that may be available for modelling. While this can pose sample size 

653 constraints, it allows for accurate linking of a detection and the proximate habitat characteristics. 

654 Species with long-range vocalizations (e.g. sperm whales and blue whales) may present 

655 challenges in accurately modelling species-habitat relationships given the broad spatial scale 

656 across which these species could be detected. Further research is needed on species-specific 

657 detection distance and vocalization rates, similar to the body of work that has established 

658 trackline detection probabilities and effective strip width for cetacean species during visual line-

659 transect surveys (Barlow, et al., 2001; Barlow et al., 2011). 
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664 5. Conclusion 

665 We selected a well-studied species to develop habitat models built with acoustic data and 

666 a combination of visual and acoustic data. The process of building multiple models from a single 

667 shipboard survey allowed for a more direct inspection of the consistency of these two methods in 

668 capturing Dall’s porpoise distribution. The combined model of Dall’s porpoise shows promise 

669 for future efforts combining visual and acoustic data into cetacean habitat models. However, for 

670 this species, the two methodologies appear to be more complementary rather than directly 

671 additive. The current study highlights discrepancies in population sampling between acoustic and 

672 visual survey methods that should inform future population assessments and modelling efforts 

673 using these techniques. 
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